Тригонометрические уравнения — формулы, решения, примеры. Арктангенс и арккотангенс

>> Арктангенс и арккотангенс. Решение уравнений tgx = а, ctgx = a

§ 19. Арктангенс и арккотангенс. Решение уравнений tgx = а, ctgx = a

В примере 2 §16 мы не смогли решить три уравнения:

Два из них мы уже решили - первое в § 17 и второе в § 18, для этого нам пришлось ввести понятия арккосинуса и арксинуса. Рассмотрим третье уравнение х = 2.
Графики функций у=tg х и у=2 имеют бесконечно много общих точек, абсциссы всех этих точек имеют вид - абсцисса точки пересечения прямой у = 2 с главной ветвью тангенсоиды (рис. 90). Для числа х1 математики придумали обозначение агсtg 2 (читается «арктангенс двух»). Тогда все корни уравнения х=2 можно описать формулой х=агсtg 2 + пк.
Что же такое агсtg 2? Это - число, тангенс которого равен 2 и которое принадлежит интервалу
Рассмотрим теперь уравнение tg х = -2.
Графики функций имеют бесконечно много общих точек, абсциссы всех этих точек имеют вид абсцисса точки пересечения прямой у = -2 с главной ветвью тангенсоиды. Для числа х 2 математики придумали обозначение агсtg(-2). Тогда все корни уравнения х = -2 можно описать формулой


Что же такое агсtg(-2) ? Это-число, тангенс которого равен -2 и которое принадлежит интервалу . Обратите внимание (см. рис. 90): х 2 = -х 2 . Это значит, что агсtg(-2) = - агсtg 2.
Сформулируем определение арктангенса в общем виде.

Определение 1. агсtg а (арктангенс а) - это такое число из интервала , тангенс которого равен а. Итак,


Теперь мы в состоянии сделать общий вывод о решении уравнения х=а: уравнение х = а имеет решения


Выше мы отметили, что агсtg(-2) = -агсtg 2. Вообще, для любого значения а справедлива формула


Пример 1. Вычислить:

Пример 2. Решить уравнения:

А) Составим формулу решений:

Вычислить значение арктангенса в данном случае мы не можем, поэтому запись решений уравнения оставим в полученном виде.
Ответ:
Пример 3. Решить неравенства:
Неравенство вида можно решать графически, придерживаясь следующего планам
1) построить тангенсоиду у = tg х и прямую у = а;
2) выделить для главной ветви тангейсоиды промежуток оси х, на котором выполняется заданное неравенство;
3) учитывая периодичность функции у = tg х, записать ответ в общем виде.
Применим этот план к решению заданных неравенств.

: а) Построим графики функций у = tgх и у = 1. На главной ветви тангенсоиды они пересекаются в точке


Выделим промежуток оси х, на котором главная ветвь тангенсоиды расположена ниже прямой у = 1, - это интервал
Учитывая периодичность функции у = tgх, делаем вывод, что заданное неравенство выполняется на любом интервале вида:


Объединение всех таких интервалов и представляет собой общее решение заданного неравенства.
Ответ можно записать и по-другому:


б) Построим графики функций у = tg х и у = -2. На главной ветви тангенсоиды (рис. 92) они пересекаются в точке х = агсtg(-2).


Выделим промежуток оси х, на котором главная ветвь тангенсоиды


Рассмотрим уравнение с tg х=а, где а>0. Графики функций у=сtg х и у =а имеют бесконечно много общих точек, абсциссы всех этих точек имеют вид: х = х 1 + пк, где х 1 =агссtg а - абсцисса точки пересечения прямой у=а с главной ветвью тангенсоиды (рис. 93). Значит, агссtg a - это число, котангенс которого равен а и которое принадлежит интервалу (0, п); на этом интервале строится главная ветвь графика функции у =сtg х.


На рис. 93 представлена и графическая иллюстрация решения уравнения с1tg = -а. Графики функций у =сtg х и у = -а имеют бесконечно много общих точек, абсциссы всех этих точек имеют вид х = х 2 + пк, где х 2 = агссtg (- а) - абсцисса точки пересечения прямой у = -а с главной ветвью тангенсоиды. Значит, агссtg(-а) - это число, котангенс которого равен -а и которое принадлежит интервалу (О, п); на этом интервале строится главная ветвь графика функции У =сtg х.

Определение 2. агссtg а (арккотангенс а) - это такое число из интервала (0, п), котангенс которого равен а.
Итак,


Теперь мы в состоянии сделать общий вывод о решении уравнения сtg х=а: уравнение ctg х = а имеет решения:


Обратите внимание (см. рис. 93): х 2 =п-х 1 . Это значит, что

Пример 4. Вычислить:

А) Положим,


Уравнение сtg х=а практически всегда можно преобразовать к виду Исключение составляет уравнение сtg х =0. Но в этом случае, воспользовавшись тем, что можно перейти к
уравнению соs x=0. Таким образом, уравнение вида х=а самостоятельного интереса не представляет.

А.Г. Мордкович Алгебра 10 класс

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе скачать

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Волновое уравнение, дифференциальное уравнение с частными производными, описывающее процесс распространения возмущений в некоторой среде Тихонов А. Н. и Самарский А. А., Уравнения математической физики, 3 изд., М., 1977. - с. 155....

Классификации гиперболических дифференциальных уравнений в частных производных

Уравнение теплопроводности - дифференциальное уравнение с частными производными параболического типа, описывающее процесс распространения теплоты в сплошной среде (газе...

Математические методы, применяемые в теории систем массового обслуживания

Вероятности состояний системы можно найти из системы дифференциальных уравнений Колмогорова, которые составлены по следующему правилу: В левой части каждого из них стоит производная вероятности i-го состояния...

Нестационарное уравнение Риккати

1.Общее уравнение Риккати имеет вид: , (1.1) где P, Q, R-непрерывные функции от xпри изменении x в интервале Уравнение (1.1) заключает в себе как частные случаи уже рассмотренные нами уравнения: при получаем линейное уравнение, при -уравнение Бернулли...

Основы научного исследования и планирование экспериментов на транспорте

Получим функциональную зависимость Y = f(X) (уравнение регрессии) с помощью метода наименьших квадратов (МНК). В качестве аппроксимирующих функций использовать линейную (Y = a0 + a1X) и квадратичную зависимости (Y = a0 + a1X + a2X2). Посредством МНК значения a0...

Поместим полюс полярной системы координат в начало прямоугольной системы координат, полярную ось совместим с положительной полуосью абсцисс (рис.3). Рис. 3 Возьмем уравнение прямой в нормальном виде: (3.1) - длина перпендикуляра...

Полярная система координат на плоскости

Составим уравнение в полярных координатах окружности, проходящей через полюс, с центром на полярной оси и радиусом R. Из прямоугольного треугольника OAA получаем OA= OA (рис. 4)...

Понятия выборочной теории. Ряды распределения. Корреляционный и регрессионный анализ

Изучить: а) понятие парной линейной регрессии; б) составление системы нормальных уравнений; в) свойства оценок по методу наименьших квадратов; г) методику нахождения уравнения линейной регрессии. Предположим...

Построение решений дифференциальных уравнений в виде степенных рядов

В качестве примера приложения построенной теории рассмотрим уравнение Бесселя: (6.1) Где. Особая точка z =0 является регулярной. Других особенностей в конечной части плоскости нет. В уравнении (6.1) , поэтому определяющее уравнение имеет вид, Т.е...

Решение матричных уравнений

Матричное уравнение ХА=В также можно решить двумя способами: 1. Вычисляется обратная матрица любым из известных способов. Тогда решение матричного уравнения будет иметь вид: 2...

Решение матричных уравнений

Для решения уравнений вида АХ=ХВ, АХ+ХВ=С описанные выше методы не подходят. Они не подходят также для решения уравнений, в которых хотя бы один из сомножителей при неизвестной матрице Х является вырожденной матрицей...

Решение матричных уравнений

Уравнения вида АХ=ХА решаются так же, как и в предыдущем случае, то есть поэлементно. Решение здесь сводится к нахождению перестановочной матрицы. Подробнее рассмотрим на примере. Пример. Найдите все матрицы...

Стационарное функционирование сети массового обслуживания с ромбовидным контуром

Из состояния может перейти в одно из следующих состояний: - за счет поступления заявки в очередь первого узла с интенсивностью; - за счет поступления из первого узла обработанной в нем заявки в очередь третьего узла с интенсивностью при...

Тригонометрические функции

Арктангенсом числа называется такое число, синус которого равен а: , если и. Все корни уравнения можно находить по формуле:...

Численные методы решения математических задач

С центром в точке A .
α - угол, выраженный в радианах.

Тангенс (tg α ) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине прилежащего катета |AB| .

Котангенс (ctg α ) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине противолежащего катета |BC| .

Тангенс

Где n - целое.

В западной литературе тангенс обозначается так:
.
;
;
.

График функции тангенс, y = tg x

Котангенс

Где n - целое.

В западной литературе котангенс обозначается так:
.
Также приняты следующие обозначения:
;
;
.

График функции котангенс, y = ctg x


Свойства тангенса и котангенса

Периодичность

Функции y = tg x и y = ctg x периодичны с периодом π .

Четность

Функции тангенс и котангенс - нечетные.

Области определения и значений, возрастание, убывание

Функции тангенс и котангенс непрерывны на своей области определения (см. доказательство непрерывности). Основные свойства тангенса и котангенса представлены в таблице (n - целое).

y = tg x y = ctg x
Область определения и непрерывность
Область значений -∞ < y < +∞ -∞ < y < +∞
Возрастание -
Убывание -
Экстремумы - -
Нули, y = 0
Точки пересечения с осью ординат, x = 0 y = 0 -

Формулы

Выражения через синус и косинус

; ;
; ;
;

Формулы тангенса и котангенс от суммы и разности



Остальные формулы легко получить, например

Произведение тангенсов

Формула суммы и разности тангенсов

В данной таблице представлены значения тангенсов и котангенсов при некоторых значениях аргумента.

Выражения через комплексные числа

Выражения через гиперболические функции

;
;

Производные

; .


.
Производная n-го порядка по переменной x от функции :
.
Вывод формул для тангенса > > > ; для котангенса > > >

Интегралы

Разложения в ряды

Чтобы получить разложение тангенса по степеням x , нужно взять несколько членов разложения в степенной ряд для функций sin x и cos x и разделить эти многочлены друг на друга , . При этом получаются следующие формулы.

При .

при .
где B n - числа Бернулли. Они определяются либо из рекуррентного соотношения:
;
;
где .
Либо по формуле Лапласа:


Обратные функции

Обратными функциями к тангенсу и котангенсу являются арктангенс и арккотангенс , соответственно.

Арктангенс, arctg


, где n - целое.

Арккотангенс, arcctg


, где n - целое.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
Г. Корн, Справочник по математике для научных работников и инженеров, 2012.

На этом уроке мы продолжим изучение арктангенса и решение уравнений вида tg x = a для любого а. В начале урока решим уравнение с табличным значением и проиллюстрируем решение на графике, а потом и на круге. Далее решим уравнение tgx = aв общем виде и выведем общую формулу ответа. Проиллюстрируем вычисления на графике и на круге и рассмотрим различные формы ответа. В конце урока решим несколько задач с иллюстрацией решений на графике и на круге.

Тема: Тригонометрические уравнения

Урок: Арктангенс и решение уравнения tgx=a (продолжение)

1. Тема урока, введение

На этом уроке мы рассмотрим решение уравнения для любого действительного

2. Решение уравнения tgx=√3

Задача 1. Решить уравнение

Найдем решение с помощью графиков функций (рис. 1).

Рассмотрим промежуток На этом промежутке функция монотонна, значит, достигается только при одном значении функции.

Ответ:

Решим это же уравнение с помощью числовой окружности (рис. 2).

Ответ:

3. Решение уравнения tgx=a в общем виде

Решим уравнение в общем виде (рис. 3).

На промежутке уравнение имеет единственное решение

Наименьший положительный период

Проиллюстрируем на числовой окружности (рис. 4).

4. Решение задач

Задача 2. Решить уравнение

Произведем замену переменной

Задача 3. Решить систему:

Решение (рис. 5):

В точке значение поэтому решением системы является только точка

Ответ:

Задача 4. Решить уравнение

Решим методом замены переменной:

Задача 5. Найти число решений уравнения на промежутке

Решим задачу с помощью графика (рис. 6).

Уравнение имеет три решения на заданном промежутке.

Проиллюстрируем на числовой окружности (рис. 7), хотя это не так наглядно, как на графике.

Ответ: Три решения.

5. Вывод, заключение

Мы решали уравнение для любого действительного используя понятие арктангенс. На следующем уроке мы познакомимся с понятием арккотангенс.

Список литературы

1. Алгебра и начала анализа, 10 класс (в двух частях). Учебник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. -М.: Мнемозина, 2009.

2. Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. -М.: Мнемозина, 2007.

3. Виленкин Н. Я., Ивашев-Мусатов О. С., Шварцбурд С. И. Алгебра и математический анализ для 10 класса (учебное пособие для учащихся школ и классов с углубленным изучением математики).-М.: Просвещение, 1996.

4. Галицкий М. Л., Мошкович М. М., Шварцбурд С. И. Углубленное изучение алгебры и математического анализа.-М.: Просвещение, 1997.

5. Сборник задач по математике для поступающих во ВТУЗы (под ред. М. И.Сканави).-М.:Высшая школа, 1992.

6. Мерзляк А. Г., Полонский В. Б., Якир М. С. Алгебраический тренажер.-К.: А. С.К., 1997.

7. Саакян С. М., Гольдман А. М., Денисов Д. В. Задачи по алгебре и началам анализа (пособие для учащихся 10-11 классов общеобразов. учреждений).-М.: Просвещение, 2003.

8. Карп А. П. Сборник задач по алгебре и началам анализа: учеб. пособие для 10-11 кл. с углубл. изуч. математики.-М.: Просвещение, 2006.

Домашнее задание

Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. -М.: Мнемозина, 2007.

№№ 22.18, 22.21.

Дополнительные веб-ресурсы

1. Математика.

2. Интернет-портал Problems. ru .

3. Образовательный портал для подготовки к экзаменам.